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The radiative contribution to the thermal conductivity of composite media is analyzed by the Chapman-
Enskog expansion of a multiphase radiation transfer model. The radiative thermal conductivity obtained gen-
eralizes the Rosseland diffusion approximation and is presented as function of the phase composition of the
medium, the specific surface of the phase boundaries, and the spectral optical properties of the phases, namely,
the refractive index and the absorption coefficient. It is applicable in the domain of parameters where the
scattering of thermal radiation can be considered in the approximation of geometrical optics. The obtained
results are compared with those derived by the Mie theory for dilute dispersions. A considerable discrepancy is
revealed only when the diameter of the dispersed scatterers becomes inferior to the wavelength. The results are
also compared with experiments on high-temperature thermal conductivity in packed beds where the Mie
theory cannot be applied because of dependent scattering of thermal radiation. The experimental validation
covers the range of particle sizes from 45 �m to 11 mm and the temperature interval from �300 to �1200 K.
The relation between the theory and the experiments is classified from satisfactory agreement in the best case
to consistency in the worst case.
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I. INTRODUCTION

Heat transfer in heterogeneous materials is of continuous
interest for more than hundred years starting by the theoret-
ical study of the Laplace equation for dispersed media by
Maxwell.1 The history of this subject is covered in mono-
graphs such as2 and some research papers.3,4 Numerous re-
cent publications5–9 are inspired by unceasing progress in the
technology of materials proposing more and more complex
composite structures. The principal directions of the current
theoretical studies are general methods for description and
reconstruction of heterogeneous structures,10 multiscale
modeling,11 and multiphysics applications considering, for
example, the contribution of molecular heat transfer in the
gas phase4 or the phonon transport in the ballistic regime.12

The radiative heat transfer perceived as multiple absorp-
tion and re-emission of the thermal radiation can be the prin-
cipal heat transfer mechanism at certain conditions or it can
act in parallel to other physical transport processes of differ-
ent nature. In the both cases the radiative thermal conductiv-
ity can be introduced as the ratio of the radiative contribution
to the heat flow to the temperature gradient. The radiative
heat transfer in heterogeneous media is traditionally impor-
tant for the high-temperature13–15 and geophysical16 domains
and finds various other applications.17,18 In porous materials
the radiative thermal conductivity can be estimated by ap-
proaches for radiative transfer between opaque bodies for a
given morphology of pores.19,20 Rosseland21 was first who
found a relation between the radiative thermal conductivity
and the general radiative properties as the absorption coeffi-
cient. Various expansions of the radiation transfer equation
�RTE� in an optically thick domain22–24 result in similar re-
lations, which is recognized to be the most general way to
estimate the radiative thermal conductivity.

Radiation transfer in dilute dispersions is rigorously de-
scribed by the RTE with the coefficients referred to as the

radiative properties estimated from radiation scattering by
individual particles.25 The subject of the present study is not
dilute but dense dispersed media or, generally, multiphase
media with comparable volume fractions of different phases.
One has never proven that radiation transfer in a dense dis-
persed system can be described by a RTE because of so-
called dependent scattering, i.e., influence of neighbor par-
ticles. Even if the model of RTE is accepted for a multiphase
medium, the Mie theory of scattering25 is no more satisfac-
tory to estimate the radiative properties, and additional ef-
forts are required for theoretical or experimental identifica-
tion thereof.26

Currently, the so-called multiphase RTE �MRTE� is con-
sidered to be a promising theoretical model for multiphase
media where each phase is characterized by its own average
radiation intensity, thus producing a system of coupled inte-
grodifferential equations, each of them similar to a single
RTE. The MRTE was first derived for a medium with a
single absolutely transparent phase and the other phases be-
ing completely opaque.27,28 However, this case is, obviously,
reduced to a single RTE and is interesting only as a method
to estimate the dependent radiative properties. The general
case of MRTE for arbitrary optical properties of phases is
discussed in recent publications.29–31 The formal MRTE
model is more general than the conventional RTE because
the proper choice of parameters of MRTE reduces it to a
single RTE in the case where the RTE is proved to be rigor-
ous, for example, in dilute dispersions. On the other hand,
the examples of the mixture of a transparent and an opaque
phases with comparable volume fractions and the mixture of
two transparent phases with considerably different refractive
indices and comparable volume fractions30 show that charac-
terization of radiation by a single intensity accepted in the
RTE is insufficient and the two partial intensities for each
phase in the framework of MRTE allow a more precise char-
acterization.

Our previous relevant publications concern conductive
heat transfer controlled by necks of condensed phase be-
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tween particles in powder and packed beds,32 heat transfer
controlled by molecular transport through the gas phase in
powder and packed beds,3 along with coupling of the two
above mechanisms.4 Radiation transfer in multiphase media
is considered in the cases of one transparent phase and other
opaque phases28 and two phases with arbitrary optical
properties.30 The present paper reduces the developed mod-
els for radiation transfer to Fourier’s law by the Chapman-
Enskog analysis in case of optically thick media. The result-
ing radiative thermal conductivity complements previous
models of heat transfer.3,4,32

The objective is obtaining a theoretical expression for the
radiative thermal conductivity as function of phase composi-
tion, optical properties of phases, and morphological param-
eters of the medium. The study is based on the MRTE model
described in Sec. II, which was proposed and validated in
Ref. 30. The radiative properties of this model are estimated
in the approximation of geometrical optics. The radiative
thermal conductivity itself is obtained from the MRTE by the
Chapman-Enskog expansion in Sec. III. The result is ana-
lyzed in Sec. IV and compared with known theoretical mod-
els in Sec. V and experimental data in Sec. VI.

II. MULTIPHASE MODEL

Radiation transfer in a multiphase medium can be de-
scribed by a system of radiation transfer equations for partial
spectral radiation intensities I�� with index � indicating the
photon frequency and � the number of phase. The partial
intensity I�� is defined as the average of the local radiation
intensity over phase � within a reference domain of the
medium.30 Assuming that sequential scattering events at
phase boundaries are independent, the geometrical optics
laws give the following radiation transfer equations for a
two-phase statistically isotropic heterogeneous medium with
�=0,1 �Ref. 30�:
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2B� − ��0 +
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where � is the unit vector of direction, �� the absorption
coefficient in phase �, n� the refractive index, f� the volume
fraction of phase �, A01 the specific surface of 0–1 phase
boundaries per unit volume, ��� the hemispherical reflectiv-
ity for the incidence from phase � to phase �,

B�d� =
2h�3d�

c2�eh�/kT − 1�
, �3�

the blackbody radiation in vacuum33 with h Planck’s con-
stant, c the speed of light in vacuum, k the Boltzmann con-
stant, and T the temperature, and the scattering phase
functions,30

R�����,�� =
���� �	�

���

, �4�

T10���,�� = T01���,�� = 2
1 − �01��	0�

1 − �01

d cos2 	0

d cos�	0 − 	1�
,

�5�

with �����	� as the directional reflectivity for the incidence
from phase � to phase �, 	= ��−
� /2 as the angle of inci-
dence corresponding to specular reflection at the scattering
angle 
, cos 
= ��� ,��, 	0 and 	1 are the angles of inci-
dence and refraction, respectively, corresponding to refrac-
tion at the scattering angle 
, which can be found from
Snell’s refraction law n0 sin 	0=n1 sin 	1 and the scattering
relation30 
= �	0−	1�.

Fresnel’s equation gives the directional reflectivity of un-
polarized radiation by materials with small extinction
index,33

�01��	0� =
1

2

sin2�	1 − 	0�
sin2�	1 + 	0��1 +

cos2�	1 + 	0�
cos2�	1 − 	0�	 . �6�

The hemispherical reflectivity is the weighted average over
the incidence angle 	,

��� = 2�
0

1

�����	�cos 	d cos 	 . �7�

The following reciprocity relations are useful for the direc-
tional reflectivity:

�01��	0� = �10��	1� , �8�

and for the hemispherical reflectivity,

n0
2�1 − �01� = n1

2�1 − �10� . �9�

The partial radiation intensities obtained from Eqs. �1�
and �2� give the integral homogenized intensity defined as
the average of the local intensity over the reference
domain,30

I� = f0I�0 + f1I�1. �10�

The homogenized spectral heat flux is defined as a moment
of I�,33
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q� = �
4�

I�����d� . �11�

Finally, the total heat flux is

q = �
0

�

q�d� . �12�

III. CHAPMAN-ENSKOG ANALYSIS

Consider a slightly nonuniform state of the medium char-
acterized by the spatial distribution of its local temperature
T. According to the Chapman-Enskog method,34 the solution
of the system of integrodifferential Eqs. �1� and �2� can be
expanded in series with the smallness parameter proportional
to ��T�,

I�� = I��
�0� + I��

�1� + I��
�2� + ¯ , �13�

where the zero-order term corresponds to the thermodynamic
equilibrium at temperature T,

I��
�0� = n�

2B��T� , �14�

and the higher-order terms can be found from the infinite set
of integral equations,
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�16�

for j=0,1 ,2 , . . ..
In the lowest order j=0, the left-hand sides of Eqs. �15�

and �16� are proportional to a projection of the unit vector of
direction �,

� � I��
�0� = n�

2 dB�

dT
� � T . �17�

On the other hand, function � is the eigenfunction of the
scattering operators in case of an isotropic medium,

1

4�
�

4�

R���
���d�� = R���,
1

4�
�

4�

T���
���d��

= T��� , �18�

where 
=arccos��� ,�� is the scattering angle and R�� and
T�� are the corresponding eigenvalues. Therefore, the first-
order term in expansion �13� is sought as

I��
�1� = �i�,�� , �19�

with the unknown vector i� independent of angle �. Substi-
tuting Eq. �19� in Eqs. �15� and �16� at j=0 reduces them to
a system of linear algebraic equation relative i�. Finally, the
first-order term of the Chapman-Enskog expansion is found
as

I�0
�1� = −

n0
2f0a11 + n0n1f1a01

a00a11 − a01
2

4

A01

dB�

dT
� � T , �20�

I�1
�1� = −

n1
2f1a00 + n0n1f0a01

a00a11 − a01
2

4

A01

dB�

dT
� � T , �21�

with

a00 = 1 + g0 − �01R01, �22�

a01 = T01

�1 − �01��1 − �10� , �23�

a11 = 1 + g1 − �10R10, �24�

g� =
4f���

A01
. �25�

Successive application of Eqs. �10�–�12� to solutions �20�
and �21� results in the radiative heat flux presented as the
Fourier’s law with the accuracy up to the first Chapman-
Enskog term,

q = − � � T , �26�

with the radiative thermal conductivity

� =
64T3

3A01
�

0

�

HRdx , �27�

where

 =
2

15

�5k4

c2h3 , �28�

is the Stefan-Boltzmann constant,

x =
h�

kT
, �29�

the reduced frequency,

H�x� =
n0

2f0
2a11 + 2n0n1f0f1a01 + n1

2f1
2a00

a00a11 − a01
2 , �30�

the spectral structure factor, and
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R =
15

4�4

x4ex

�ex − 1�2 , �31�

Rosseland’s weight function.21 Equation �27� generalizes
Rosseland’s diffusion approach21 to the multiphase medium.
It takes into account the spectral optical properties of the
phases through the structure factor H, Eq. �30�, which de-
pends on the phase volumetric fractions f�, their refractive
indices n� and absorption coefficients ��, the hemispherical
reflectivities ��� of the interfaces, and the eigenvalues R��

and T�� of the scattering integrals. The above results are
applicable in the domain of parameters where the scattering
of the thermal radiation can be considered in the approxima-
tion of the geometrical optics because the coefficients of the
base model of radiation transfer30 are obtained in this ap-
proximation.

Eigenvalues of the scattering integrals

The eigenvalues of the scattering integrals corresponding
to the eigenfunction � are defined by Eq. �18�. The defini-
tions of scattering phase functions �4� and �5� through the
directional reflectivity �����	� useful for geometrical optics
reduce calculation of the eigenvalues to the following inte-
grals:

����1 − R��� = 4�
0

1

�����	�cos3 	d cos 	 , �32�

�1 − �01�T01 = 2�
0

1

�1 − �01��	0��cos�	0 − 	1�cos 	0d cos 	0,

�33�

where the incidence 	0 and the refraction 	1 angles are re-
lated by Snell’s law. The optical reciprocity, Eq. �8�, results
in the following reciprocity relations for the eigenvalues:

n0
4�1 − �01�1 + R01�� = n1

4�1 − �10�1 + R10�� , �34�

T01 = T10. �35�

Equation �34� should be applied along with the reciprocity
for the hemispherical reflectivities given by Eq. �9�. Integrals
�32� and �33� are numerically calculated for Fresnel’s direc-
tional reflectivity, Eq. �6�, and plotted in Fig. 1 along with
the hemispherical reflectivities �Eq. �7��.

IV. MODELS OF MULTIPHASE MEDIA

The key issue of the above theory is estimation of the
structure factor H given by Eq. �30�, which depends on the
morphological characteristics of the multiphase medium and
the spectral optical properties of the phases. The complete set
of these parameters is rarely available from experiments.
Sometimes the inverse problem of identifying the missing
parameters can be posed. For these purposes, simplified
models and limiting cases with reduced number of param-
eters are useful.

A. Dilute dispersed systems

Let phase 1 with negligible volume fraction be dispersed
in matrix 0. The multiphase model of radiation transfer �Eqs.
�1� and �2�� is shown30 to reduce to single RTE in this case.
The Chapman-Enskog analysis can be applied to the reduced
equation. The same result is expected in the limit f1→0
applied to general structure factor �30�,

H =
n0

2a11

a00a11 − a01
2 . �36�

Radiative thermal conductivity �27� is reduced to the con-
ventional for Rosseland’s approximation form,33

� =
16T3

3
�

0

� n0
2Rdx

�tr
, �37�

where the transport extinction coefficient is evaluated as

�tr = �a00 − a01
2 /a11�

A01

4
. �38�

1. Isotropic dispersed scatterers

The well-known example of an isotropic scatterer is a
specularly reflecting opaque ��1→�� sphere with the direc-
tional reflectivity of its surface independent of the
incidence.33 In this case the multiphase model is reduced to
an RTE with the scattering phase function30

R01 = 1. �39�

According to definition �18�, the isotropic scattering corre-
sponds to the eigenvalue

R01 = 0. �40�

Thus, the case of dilute dispersed isotropic scatterers is given
by the limit of Eq. �38� at �1→� and eigenvalue �40�,

�tr
isotropic =

A01

4
+ �0, �41�

with the first term in the right-hand side equal to the scatter-
ing coefficient.30 In the considered case, the transport extinc-
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FIG. 1. �Color online� Eigenvalues R01, R10, and T01=T10 of the
scattering integrals and hemispherical reflectivities �01 and �10 ver-
sus the ratio of the refractive indices n01=n0 /n1 for Fresnel’s reflec-
tion law.
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tion coefficient �tr is the sum of the scattering and absorption
coefficients referred to as the extinction coefficient �.

Equation �41� is independent of the physics of scattering
and is applicable to an arbitrary absorbing isotropically scat-
tering medium where radiation transfer is described by an
RTE with scattering phase function �39�. For example, the
isotropic scattering is produced not only by specularly re-
flecting spheres but also by arbitrary convex randomly ori-
ented particles with constant directional reflectivity.35 This
model is satisfactory for scatterers-metallic particles with the
size well above the wavelength to assure reflection according
to the laws of geometrical optics.36

2. Scattering by opaque diffusely reflecting particles

In the limit of opaque phase 1, the radiation is excluded
from this phase so that the only significant component of the
phase function matrix is R01. Transport extinction coefficient
�38� becomes

�tr =
A01

4
�1 − �01R01� + �0. �42�

Indeed, it contains only the scattering parameters related to
R01, namely, the hemispherical reflectivity �01 and the eigen-
value R01. Diffusely reflecting spherical33 as well as ran-
domly oriented convex35 particles scatter with the following
phase function:

R01�
� =
8

3�
�sin 
 − 
 cos 
� . �43�

An example of diffusely reflecting particles is given by ag-
glomerates of nanoparticles.36 Function �43� monotonously
increases with the scattering angle 
 in the range from 0 to
�, which signifies preferentially backward scattering. There-
fore, reducing the radiative heat transfer relative isotropic
scattering is expected. Indeed, the eigenvalue obtained from
Eq. �18� as

R01 =
1

2
�

−1

1

R01�
�cos 
d cos 
 = −
4

9
. �44�

is negative so that increasing the diffuse reflectivity �01 in-
creases transport extinction coefficient �42�. The maximum
“thermal insulating” effect is attained for a transparent ma-
trix with �0=0 at �01=1. As follows from Eqs. �42� and �44�,
the transport extinction coefficient is increased by a factor of
13/9 at these conditions and, hence, the heat flux is reduced
by this factor.

3. Opaque dielectric particles

An opposite example of preferentially forward scattering
is given by dielectric particles33 where radiative heat transfer
is expected to be enhanced relative the case of isotropic scat-
tering. The enhancement factor can be introduced as the ratio
of the corresponding structure factors or transport scattering
coefficients. Thus, for opaque particles in transparent matrix
Eqs. �41� and �42� result in

Fopaque =
Hopaque

Hisotropic
=

�tr
isotropic

�tr
opaque =

1

1 − �01R01
. �45�

The lower full and broken curves in Fig. 2 show this en-
hancement factor for dielectrics with small extinction index
reflecting according to Eq. �6� where reflectivity �01 and ei-
genvalue R01 correspond to Fig. 1. The effect of the forward
scattering by opaque dielectric particles is small because �01
tends to zero where R01 tends to unity and vice versa.

4. Transparent dielectric particles

The scattering coefficient and phase function by transpar-
ent particles of a specified shape can be calculated by ray
optics. Such a rigorous method takes into account sequential
internal reflections.33 The Chapman-Enskog method can be
applied in this case. The multiphase model neglecting corre-
lation between internal reflections gives an approximate but
satisfactory description30 independent of the particle shape.
An approximate structure factor for dilute dispersion of
transparent particles can be obtained in the framework of the
multiphase model from Eq. �36�. Thus, the enhancement fac-
tor for transparent particles in transparent matrix is

Ftrans =
Htrans

Hisotropic
=

�tr
isotropic

�tr
trans

=
1 − �10R10

�1 − �10R10��1 − �01R01� − �1 − �01��1 − �10�T01
2 ,

�46�

where the reflectivities and the eigenvalues are given in Fig.
1 The upper full and broken curves in Fig. 2 show this factor.
It tends to infinity when the ratio of refractive indices tends
to unity because phase boundaries vanish in this limit.
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FIG. 2. �Color online� Radiative heat transfer enhancement fac-
tors for dilute dispersions of opaque, Fopaque, and transparent, Ftrans,
dielectric particles with small extinction index �phase 1� in trans-
parent matrix �phase 0� versus the ratio of refractive indices, n01

=1 /n10: denser particles in lighter matrix �full curves� and lighter
particles in denser matrix �broken curves�.
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B. Dense dispersed systems

If the volume fraction of the dispersed phase f1 is com-
parable with that of the matrix f0, Eq. �36� obtained for dilute
dispersions is not valid and general Eq. �30� for the structure
factor should be applied. Consider the difference between
dilute and dense dispersions on the example of opaque dis-
persed phase 1. In this case Eq. �37� is modified as

� =
16f0T3

3
�

0

� n0
2Rdx

�tr
, �47�

with

�tr =
A01

4f0
�1 − �01R01� + �0. �48�

These equations give right dilute limit, Eqs. �37� and �42�,
and predict vanishing of the radiative heat transfer at very
high fraction of the dispersed phase f1=1− f0→1 when ra-
diation is blocked by the opaque phase. The factor of f0 in
Eq. �47� signifies that only the transparent phase contributes
to the heat transfer. The factor of 1 / f0 in the first term of the
right-hand side of Eq. �48� is the so-called scaling factor
introduced to take into account the exclusion of radiation
from the opaque phase.30 There are no restrictions to apply
Eq. �48� at high fractions of the opaque phase, when it be-
comes not dispersed but continuous. However, matrix phase
0, where radiation is transferred, is supposed to be still con-
tinuous.

C. Models of spectral properties

Estimation of spectral integrals, for example, in Eqs. �27�,
�37�, and �47�, requires the detailed spectral optical proper-
ties of the phases, which are not always available. Therefore,
simplified spectral models are useful.

1. Gray media

If the optical properties of the phases are independent of
the radiation frequency �wavelength�, the structure factor H
can be factor out of integral �27�,

� =
64T3

3A01
H , �49�

where the integral of the Rosseland function R gives unity.
General expression �30� as well as any of the above structure
models can be used to estimate the structure factor H.

2. Mixture of a transparent and a semitransparent phases

Applying the gray medium approximation is often impos-
sible because of a wide spectral range of the thermal radia-
tion. The optical properties of the same phase can be signifi-
cantly different at the different wavelengths of the thermal
spectrum. For example, it can change from completely
opaque to completely transparent. Figure 2 shows that the
radiative heat flow can vary by orders of magnitude depend-
ing of whether a phase is opaque or transparent. To model
porous ceramics with transparent pores and the solid phase
transparent in visible and near infrared and opaque in far
infrared, consider a heterogeneous medium composed of
transparent phase 0 and semitransparent phase 1. The semi-
transparent phase is absolutely transparent at photon frequen-
cies above the threshold �th and absolutely opaque below it.
Integral �27� becomes

� =
64T3

3A01
�pHinf + �1 − p�Hsup� , �50�

where

p = �
0

xth

Rdx, xth =
h�th

kT
, �51�

Hinf =
n0

2f0
2

1 − �01R01
, �52�

Hsup =
n0

2f0
2�1 − �10R10� + 2n0n1f0f1T01


�1 − �01��1 − �10� + n1
2f1

2�1 − �01R01�
�1 − �01R01��1 − �10R10� − T01

2 �1 − �01��1 − �10�
. �53�

V. COMPARISON WITH THE MIE THEORY

Let the medium be dilute suspension of polydispersed
spheres with the number distribution in diameter m�D�dD.
Then the specific surface is

A01 =
6f1

D32
, with D32 =

�
0

�

D3m�D�dD

�
0

�

D2m�D�dD

, �54�

and transport extinction coefficient �38� can be written in the
conventional for the Mie theory form37

�tr = �0 +
3

2

f1

D32
Qtr, �55�

where the transport efficiency of extinction is

Qtr = 1 − �01R01 −
T01

2 �1 − �01��1 − �10�

1 +
2

3
�1D32 − �10R10

. �56�

A. V. GUSAROV PHYSICAL REVIEW B 81, 064202 �2010�

064202-6



Fused quartz with bubbles

Circles in Fig. 3 show the transport extinction coefficient
calculated by the theory of Mie in Ref. 37 for a sample of
fused quartz containing monodispersed bubbles occupying
f1=0.05 of the volume versus the reduced bubble radius
�0D /2. These calculations were made for the refractive in-
dex of the quartz matrix n0=1.4 and its extinction index �0
=�0� /4�=10−5, where � is the wavelength. The gas in the
bubbles was supposed to be transparent with �1=0 and n1
=1. The curve in Fig. 3 shows an estimate by Eq. �55� with
the same parameters. The two methods give essentially the
same result at the diffraction parameter x=�D /��10 �see
the upper scale in Fig. 3� while the deviation of geometrical
optics-based Eq. �55� from the rigorous Mie theory becomes
more and more visible with decreasing x below 10. A con-
siderable discrepancy starts at the diffraction parameter infe-
rior to �3, meaning that the bubble diameter becomes infe-
rior to the wavelength.

VI. COMPARISON WITH EXPERIMENTS

A. Packed bed of ceramic spheres in vacuum

High-temperature thermal conductivity of packed beds in
vacuum reported in Ref. 38 gives the pure radiative conduc-
tivity. The conductive component is excluded because the
contacts between particles are very small. Figure 4 presents
experimental points38 for ceramic spheres of diameter D
=2.7 mm packed with the porosity of f0=1− f1=0.42. The
ceramic was Al2O3-based with 10% SiO2 and 1.5% MgO.38

The long-wavelength absorption edges are about 6 �m for
Al2O3, 4 �m for SiO2, and 8 �m for MgO.39 The lowest
value of the transparency threshold �th=c /�th=4 �m is ac-
cepted for the calculation by the model of the mixture of a
transparent and a semitransparent phases �Eq. �50�� shown
by full line in Fig. 4. The refractive index of particles is
taken equal to that of pure Al2O3, n1=1.7.39 The specific
surface is estimated by Eq. �54� as A01=1289 m−1.

The maximum of thermal radiation shifts to the visible
light with increasing the temperature, where the ceramic par-

ticles become more and more transparent. Therefore, at high
temperatures the full curve in Fig. 4 approaches to the limit
of transparent particles shown by upper broken line. This line
is calculated by Eq. �49� with structure factor �53�. Inversely,
the thermal radiation shifts to the far infrared with decreasing
the temperature so that the particles become less transparent
and the full curve approaches to the lower broken line cor-
responding to the limit of opaque particles calculated by Eq.
�49� with structure factor �52�. The experimental points38 lie
in between the two limits indicating that the semitranspar-
ency of the particles is essential in the considered conditions.
The model of semitransparent particles given by Eq. �50�
satisfactorily describes this experiment.

B. Packed bed of metallic spheres in air

Thermal conductivity of the packed bed of iron spheres of
diameter D=11 mm with the porosity of f0=1− f1=0.4 mea-
sured in Ref. 40 is shown in Fig. 5. The pores are filled with
air at the atmospheric pressure so that the presented measure-
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FIG. 3. Normalized transport extinction coefficient �tr /�0 in
fused quartz with 5% bubbles versus the reduced bubble radius
�0D /2: calculated by the Mie theory in Ref. 37 �circles� and esti-
mated by Eq. �55� �line�.
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FIG. 4. �Color online� Radiative thermal conductivity � of the
packed bed of ceramic spheres measured in Ref. 38 as function of
temperature T �points� compared with the model of semitransparent
particles in transparent matrix according to Eq. �50� �full curve�.
The broken lines show the gray models of transparent particles
�upper broken line� and opaque particles �lower broken line�.
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FIG. 5. �Color online� Thermal conductivity of the packed bed
of iron spheres in air measured in Ref. 40 as function of tempera-
ture T �bars� compared with the model of isotropically scattering
opaque particles in transparent matrix according to Eq. �57� �full
curve�. The broken line gives a correction by thermal conductivity
in pores estimated according to Ref. 4.

MODEL OF RADIATIVE HEAT TRANSFER IN… PHYSICAL REVIEW B 81, 064202 �2010�

064202-7



ments give a superposition of the radiative component and
the thermal conductivity through the gas in the pores. The
reflectivity of iron strongly depends on the wavelength.
However, it is a weak function of the incidence angle except
of a very oblique incidence.36 Therefore, the iron spheres are
approximately isotropic scatterers with the vanishing eigen-
value R01. This eliminates the dependence of structure factor
�30� on �01 and proposes a gray model for the radiative con-
ductivity,

� =
64f0

2T3

3A01
, �57�

which is plotted in Fig. 5 by full line. The specific surface
A01 is estimated by Eq. �54�. A considerable difference be-
tween this line and the experimental points proves the impor-
tance of heat transfer through the gas phase.

In the considered case of very high ratio of thermal con-
ductivities between the solid and gas phases, the effective
thermal conductivity of the packed bed is controlled by pores
so that it is proportional to the thermal conductivity of the
gas4 and estimated by the method proposed in Ref. 4 as 17�g
with �g being the thermal conductivity of air. The sum of the
radiative and conductive components is shown by broken
line in Fig. 5, where the temperature dependence of �g is
taken from Ref. 40. The superposition of radiation and con-
duction still underestimates the experimental data at higher
temperatures. This discrepancy can be associated with the
natural convection in the pores not taken into account. Note
that while the condition of stagnant air is declared in Ref. 40
for the cited experiment, their apparatus with a horizontal
temperature gradient cannot exclude the natural convection.
In conclusion, the model of radiative conductivity reduced
in this case to Eq. �57� is consistent with the experiment of
Ref. 40.

C. Packed bed of zirconia microspheres

The dotted line in Fig. 6 shows the best fit41 �
=0.01 W / �m K�+1.85�10−11 W / �m K4�T3 of the mea-
sured in Ref. 41 thermal conductivity of a packed bed of
hollow yttria-stabilized zirconia microspheres Metco
204B-NS in vacuum. The first term of this fit �the chain line
in Fig. 6� is supposed to be the conductivity through small
surface contacts between the spheres. The proportionality of
the second radiative term to the temperature cubed suggests
the gray medium approximation described by Eq. �49�. Ac-
cording to the data published in Ref. 42, yttria-stabilized
cubic zirconia is transparent at least till 7.5 �m with the
refractive index in the near infrared around n1=2.0. The
structure factor estimated by Eq. �30� is H=2.07 for �0
=�1=0, n0=1, n1=2.0,42 and f0=1− f1=0.57.41 The sphere
diameters are in the range from 45 to 75 �m.41 The size
distribution is not reported so that the first approximation to
the specific surface is estimated by Eq. �54� with the mean
diameter of D32=60 �m corresponding to the middle of this
interval. The upper broken line in Fig. 6 shows this estimate
to the radiative thermal conductivity, and the upper full line

is the sum of the radiative conductivity with the experimen-
tally measured residual of 0.01 W/�m K� �Ref. 41� due to
contact conductivity.

The above theoretical prediction �upper full line in Fig. 6�
considerably overestimates the experimental data �dotted
line� because of ignoring the internal structure of the hollow
microspheres. The radiation can be additionally scattered by
phase boundaries inside the microspheres, which decreases
the conductivity. Therefore, the upper broken and full lines
give superior estimates for the radiative and total thermal
conductivity, respectively, in this case. According to the im-
age of the hollow microspheres presented in Ref. 41, they
contain smaller spheres with the diameter of about 10 �m.
Therefore, the superior estimate of the specific surface is
given by Eq. �54� with the mean diameter of D32=10 �m.
This corresponds to the inferior estimates of the radiative and
total conductivities shown in Fig. 6 by the lower broken and
full lines, respectively. The experimental data do lie between
the inferior and superior theoretical estimates. However, the
two estimates differ by a factor of 6. Such low accuracy of
the theoretical calculation is mainly due to insufficient ex-
perimental characterization of the morphology of the studied
medium, which does not allow precise evaluation of the spe-
cific surface.

VII. CONCLUSION

Multiphase radiation transfer model30 is analyzed by the
Chapman-Enskog expansion relevant for optically thick do-
mains. The principal term of this expansion gives Fourier’s
law for the radiative heat flow. The result of this analysis
generalizing the Rosseland diffusion approximation is pre-
sented as the radiative thermal conductivity depending on the
phase composition of the medium, the specific surface of the
phase boundaries, and the spectral optical properties of the
phases, namely, the refractive index and the absorption coef-
ficient. It is applicable in the domain of parameters where the
scattering of the thermal radiation can be considered in the
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FIG. 6. �Color online� Thermal conductivity � of the packed
bed of hollow zirconia microspheres in vacuum versus the tempera-
ture T: experimental data obtained in Ref. 41 �dotted line�; residual
conductivity estimated in Ref. 41 �chain line�; and theoretical infe-
rior and superior bounds of the radiative �broken lines� and total
�full lines� conductivities calculated by the model of transparent
spheres of diameter D �marked near the corresponding curves� in
transparent matrix.
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approximation of the geometrical optics because the coeffi-
cients of the base model30 are obtained in this approximation.
Analytical results are presented for the structural models of
dilute dispersed systems with the dispersed particles-
isotropic and particles-diffuse scatterers and convex ran-
domly oriented dispersed particles of absolutely opaque and
absolutely transparent dielectrics and dense dispersed sys-
tems with additional assumptions about the spectral optical
properties of the phases. The spectral models of the gray
medium and a mixture of a transparent and a semitransparent
phases are considered.

The obtained results are compared with the Mie theory for
dilute dispersions by considering the example of fused quartz
with bubbles.37 The present model gives essentially the same
estimate for the transport extinction coefficient as the Mie
theory for the diffraction parameter superior to 10. A consid-
erable deviation from the Mie theory starts at the diffraction

parameter inferior to �3 meaning that the diameter of the
dispersed scatterers becomes inferior to the wavelength.

The results are compared with experiments on high-
temperature thermal conductivity in packed beds. The model
of semitransparent particles given by Eq. �50� satisfactorily
describes the thermal conductivity of ceramic spheres in
vacuum.38 The gray medium described by Eq. �49� is ex-
pected to be the best model for zirconia microspheres in
vacuum.41 However, the accuracy of the theoretical calcula-
tion is low in this case mainly due to insufficient experimen-
tal characterization of the morphology of the medium, which
does not allow precise evaluation of the specific surface. The
analysis of the experimental data on metallic spheres in air40

is complicated by participation of conduction and, probably,
convection in pores. The model of radiative conductivity re-
duced in this case to Eq. �57� is consistent with this experi-
ment.
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